Download the Conference Proceedings

 
Get your copy of the 2023 Western Nutrient Management Conference Proceedings today! Download the PDF file and view all of the available proceedings.
WNMC Proceedings - March 2023.pdf

Proceedings

Find matching any: Reset
Schroeder, K
Add filter to result:
Authors
Rogers, C
Thurgood, G
Dari, B
Marshall, J
Walsh, O.S
Schroeder, K
Loomis, G
Mookodi, K.L
Spackman, J
Sagers, J
Schroeder, K
Philpott, S
Tao, H
Schroeder, K
Topics
Nutrient Management of Agronomic Crops
General
Environmental and Agricultural Nutrient Management
Type
Oral
Poster
Year
2021
2023
Home » Authors » Results

Authors

Filter results3 paper(s) found.

1. Residue Decomposition of Surface and Incorporated Barley, Corn, and Wheat at Varying Fertilizer-N Rates

Cereal crops are commonly grown in southern Idaho and most parts of the western United States. These cereal crops are routinely harvested for their grain with the remaining plant material (chaff, stems, leaves, etc.) left in the field to decompose prior to planting of following spring crops. Understanding the effects of post-harvest residue management on barley (Hordeum vulgare L.), corn (Zea mays L.), and wheat (Tritcum aestivum L.) residue is important for optimizing... C. Rogers, G. Thurgood, B. Dari, J. Marshall, O.S. Walsh, K. Schroeder, G. Loomis

2. Determining Lime Requirements for Idaho Soils

For the past 25 years, northern Idaho soils have significantly shown a decline in soil pH, from pH 6.0 to around a pH of 5.6. Southern Idaho soils are mostly neutral to alkaline, with a pH of around 7.0 to 8.5, however, most agricultural soils pH is declining to pH < 4.5. Soil acidification is becoming a rising issue in soil sustainability, in which approximately 30% of the world surface is covered by acidic soils. Low soil solution pH can be induced by continued irrigation that increases... K.L. Mookodi, J. Spackman, J. Sagers, K. Schroeder

3. Response of Soil N Cycling, Nitrifying Organisms, and Winter Wheat Yield and Quality to Nitrification Inhibitors in High Rainfall Zones of Northern Idaho

Leaching of fertilizer nitrogen contributes to environmental pollution and is an economic loss for agricultural producers. Leaching of inorganic nitrogen fertilizers is intensified when applied to areas of high rainfall zones in excess of crop requirements. Reduction of this nitrogen loss may be achieved through the application of nitrification inhibitors at the time of planting to prevent the transformation of ammonia to more leachable nitrate by nitrifying organisms. Much research on nitrification... S. Philpott, H. Tao, K. Schroeder